Poster Abstract – D.65

PROGRESSES TOWARDS THE CLONING OF THE TOMATO PARTHENOCARPIC FRUIT (PAT) GENE

SELLERI L., PICARELLA M.E., OLIMPIERI I., MOSCONI P., SORESSI G.P., MAZZUCATO A.

Department of Agrobiology and Agrochemistry, University of Tuscia, Via S.C. de Lellis snc, 01100 Viterbo (Italy)

COS markers, fruit set, parthenocarpy, positional cloning, tomato

Our aim is to understand the molecular genetic mechanisms underlying the *parthenocarpic fruit* (*pat*) mutation of tomato, a recessive mutation conferring parthenocarpy in tomato (*Solanum lycopersicum* L.) and pleiotropic effects affecting the anthers and the ovules. Expression analysis of genes encoding key enzymes involved in GA biosynthesis showed that in normal tomato ovaries the transcript of *GA20ox1* is in low copy number before anthesis and only pollination and fertilization increase its transcription levels and, thus, GA biosynthesis. In the unpollinated ovaries of the *pat* mutant, this mechanism is de-regulated and *GA20ox1* is constitutively expressed, indicating that a high GA concentration could play a part in the parthenocarpic phenotype. The levels of endogenous GAs measured in the floral organs of the *pat* mutant support such a hypothesis. As genes involved in the control of GA synthesis (*LeT6*, *LeT12* and *LeCUC2*) and response (*SPY*) are also altered in the *pat* ovary, it is suggested that the mutation affects a regulatory gene located upstream of the control of fruit set exerted by GAs.

In addition, we have pursued the positional cloning of the *Pat* gene, by Bulk Segregant Analysis using a set of segregating populations. Former results located the *Pat* locus to the long arm of chromosome 3 between the COS markers T0796 and T1143, previously anchored on the genetic tomato map (EXPEN 2000, www.sgn.cornell.edu). By pursuing the microsynteny between tomato and Arabidopsis, novel PCR-derived COS markers have been developed and mapped inside the target window. T0796 and T1143 display a clear hit with a number of BACs belonging to two plausible unlinked contigs of the tomato *Hind*III physical map. Hence we have both verified their occurrence and carried out a matching test of the new markers on the two contigs. Moreover, a CAPS marker derived from a BAC end sequence pertaining one of the two contigs was integrated into the target window. The whole data obtained so far allowed us to refine with new anchor-points the genetic region spanning 1.2 cM between T0796 and T1143, and to restrict the *Pat*-containing interval to about 0.2 cM.